3.4.17 \(\int \frac {x^2 \sqrt {1+2 x^2+2 x^4}}{3+2 x^2} \, dx\) [317]

Optimal. Leaf size=417 \[ \frac {1}{6} x \sqrt {1+2 x^2+2 x^4}-\frac {7 x \sqrt {1+2 x^2+2 x^4}}{6 \sqrt {2} \left (1+\sqrt {2} x^2\right )}-\frac {1}{8} \sqrt {15} \tan ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )+\frac {7 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{6\ 2^{3/4} \sqrt {1+2 x^2+2 x^4}}-\frac {\left (-4+17 \sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{6\ 2^{3/4} \left (-2+3 \sqrt {2}\right ) \sqrt {1+2 x^2+2 x^4}}-\frac {5 \left (3+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{8\ 2^{3/4} \left (2-3 \sqrt {2}\right ) \sqrt {1+2 x^2+2 x^4}} \]

[Out]

-1/8*arctan(1/3*x*15^(1/2)/(2*x^4+2*x^2+1)^(1/2))*15^(1/2)+1/6*x*(2*x^4+2*x^2+1)^(1/2)-7/12*x*(2*x^4+2*x^2+1)^
(1/2)*2^(1/2)/(1+x^2*2^(1/2))+7/12*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticE(sin(2
*arctan(2^(1/4)*x)),1/2*(2-2^(1/2))^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2)*2^(1/4)/(
2*x^4+2*x^2+1)^(1/2)-5/16*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(2^(1/4)*x))*EllipticPi(sin(2*arctan(
2^(1/4)*x)),1/2-11/24*2^(1/2),1/2*(2-2^(1/2))^(1/2))*(3+2^(1/2))*(1+x^2*2^(1/2))*((2*x^4+2*x^2+1)/(1+x^2*2^(1/
2))^2)^(1/2)*2^(1/4)/(2-3*2^(1/2))/(2*x^4+2*x^2+1)^(1/2)-1/12*(cos(2*arctan(2^(1/4)*x))^2)^(1/2)/cos(2*arctan(
2^(1/4)*x))*EllipticF(sin(2*arctan(2^(1/4)*x)),1/2*(2-2^(1/2))^(1/2))*(-4+17*2^(1/2))*(1+x^2*2^(1/2))*((2*x^4+
2*x^2+1)/(1+x^2*2^(1/2))^2)^(1/2)*2^(1/4)/(-2+3*2^(1/2))/(2*x^4+2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 591, normalized size of antiderivative = 1.42, number of steps used = 13, number of rules used = 8, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {1349, 1105, 1211, 1117, 1209, 1222, 1230, 1720} \begin {gather*} -\frac {1}{8} \sqrt {15} \text {ArcTan}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {2 x^4+2 x^2+1}}\right )-\frac {15 \left (3+\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{56 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}+\frac {\left (1+\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{6\ 2^{3/4} \sqrt {2 x^4+2 x^2+1}}+\frac {3 \left (1-\sqrt {2}\right ) \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} F\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{8 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}+\frac {7 \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} E\left (2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{6\ 2^{3/4} \sqrt {2 x^4+2 x^2+1}}+\frac {5 \left (3+\sqrt {2}\right )^2 \left (\sqrt {2} x^2+1\right ) \sqrt {\frac {2 x^4+2 x^2+1}{\left (\sqrt {2} x^2+1\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \text {ArcTan}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{112 \sqrt [4]{2} \sqrt {2 x^4+2 x^2+1}}-\frac {7 \sqrt {2 x^4+2 x^2+1} x}{6 \sqrt {2} \left (\sqrt {2} x^2+1\right )}+\frac {1}{6} \sqrt {2 x^4+2 x^2+1} x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[1 + 2*x^2 + 2*x^4])/(3 + 2*x^2),x]

[Out]

(x*Sqrt[1 + 2*x^2 + 2*x^4])/6 - (7*x*Sqrt[1 + 2*x^2 + 2*x^4])/(6*Sqrt[2]*(1 + Sqrt[2]*x^2)) - (Sqrt[15]*ArcTan
[(Sqrt[5/3]*x)/Sqrt[1 + 2*x^2 + 2*x^4]])/8 + (7*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2
]*EllipticE[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(6*2^(3/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + (3*(1 - Sqrt[2])*(1 +
 Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(
8*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + ((1 + Sqrt[2])*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^
2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(6*2^(3/4)*Sqrt[1 + 2*x^2 + 2*x^4]) - (15*(3 + Sqrt[2])
*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 + Sqrt[2]*x^2)^2]*EllipticF[2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/
4])/(56*2^(1/4)*Sqrt[1 + 2*x^2 + 2*x^4]) + (5*(3 + Sqrt[2])^2*(1 + Sqrt[2]*x^2)*Sqrt[(1 + 2*x^2 + 2*x^4)/(1 +
Sqrt[2]*x^2)^2]*EllipticPi[(12 - 11*Sqrt[2])/24, 2*ArcTan[2^(1/4)*x], (2 - Sqrt[2])/4])/(112*2^(1/4)*Sqrt[1 +
2*x^2 + 2*x^4])

Rule 1105

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*((a + b*x^2 + c*x^4)^p/(4*p + 1)), x] + Dis
t[2*(p/(4*p + 1)), Int[(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4
*a*c, 0] && GtQ[p, 0] && IntegerQ[2*p]

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1222

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[-(e^2)^(-1), Int[(c*d -
 b*e - c*e*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] + Dist[(c*d^2 - b*d*e + a*e^2)/e^2, Int[(a + b*x^2 + c*x^4
)^(p - 1)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && IGtQ[p + 1/2, 0]

Rule 1230

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Di
st[(c*d + a*e*q)/(c*d^2 - a*e^2), Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[(a*e*(e + d*q))/(c*d^2 - a*e^2)
, Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a
*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]

Rule 1349

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> In
t[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x]
 && NeQ[b^2 - 4*a*c, 0] && (IGtQ[p, 0] || IGtQ[q, 0] || IntegersQ[m, q])

Rule 1720

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[-b + c*(d/e) + a*(e/d), 2]*(x/Sqrt[a + b*x^2 + c*x^4])]/(2*d*
e*Rt[-b + c*(d/e) + a*(e/d), 2])), x] + Simp[(B*d + A*e)*(A + B*x^2)*(Sqrt[A^2*((a + b*x^2 + c*x^4)/(a*(A + B*
x^2)^2))]/(4*d*e*A*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticPi[Cancel[-(B*d - A*e)^2/(4*d*e*A*B)], 2*ArcTan[q*x], 1
/2 - b*(A/(4*a*B))], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0]

Rubi steps

\begin {align*} \int \frac {x^2 \sqrt {1+2 x^2+2 x^4}}{3+2 x^2} \, dx &=\int \left (\frac {1}{2} \sqrt {1+2 x^2+2 x^4}-\frac {3 \sqrt {1+2 x^2+2 x^4}}{2 \left (3+2 x^2\right )}\right ) \, dx\\ &=\frac {1}{2} \int \sqrt {1+2 x^2+2 x^4} \, dx-\frac {3}{2} \int \frac {\sqrt {1+2 x^2+2 x^4}}{3+2 x^2} \, dx\\ &=\frac {1}{6} x \sqrt {1+2 x^2+2 x^4}+\frac {1}{6} \int \frac {2+2 x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx+\frac {3}{8} \int \frac {2-4 x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {15}{4} \int \frac {1}{\left (3+2 x^2\right ) \sqrt {1+2 x^2+2 x^4}} \, dx\\ &=\frac {1}{6} x \sqrt {1+2 x^2+2 x^4}-\frac {\int \frac {1-\sqrt {2} x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx}{3 \sqrt {2}}+\frac {3 \int \frac {1-\sqrt {2} x^2}{\sqrt {1+2 x^2+2 x^4}} \, dx}{2 \sqrt {2}}+\frac {1}{4} \left (3 \left (1-\sqrt {2}\right )\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx+\frac {1}{6} \left (2+\sqrt {2}\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx-\frac {1}{28} \left (15 \left (3+\sqrt {2}\right )\right ) \int \frac {1}{\sqrt {1+2 x^2+2 x^4}} \, dx+\frac {1}{28} \left (15 \left (2+3 \sqrt {2}\right )\right ) \int \frac {1+\sqrt {2} x^2}{\left (3+2 x^2\right ) \sqrt {1+2 x^2+2 x^4}} \, dx\\ &=\frac {1}{6} x \sqrt {1+2 x^2+2 x^4}-\frac {7 x \sqrt {1+2 x^2+2 x^4}}{6 \sqrt {2} \left (1+\sqrt {2} x^2\right )}-\frac {1}{8} \sqrt {15} \tan ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {1+2 x^2+2 x^4}}\right )+\frac {7 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{6\ 2^{3/4} \sqrt {1+2 x^2+2 x^4}}+\frac {3 \left (1-\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{8 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}+\frac {\left (1+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{6\ 2^{3/4} \sqrt {1+2 x^2+2 x^4}}-\frac {15 \left (3+\sqrt {2}\right ) \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{56 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}+\frac {5 \left (3+\sqrt {2}\right )^2 \left (1+\sqrt {2} x^2\right ) \sqrt {\frac {1+2 x^2+2 x^4}{\left (1+\sqrt {2} x^2\right )^2}} \Pi \left (\frac {1}{24} \left (12-11 \sqrt {2}\right );2 \tan ^{-1}\left (\sqrt [4]{2} x\right )|\frac {1}{4} \left (2-\sqrt {2}\right )\right )}{112 \sqrt [4]{2} \sqrt {1+2 x^2+2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 4.92, size = 204, normalized size = 0.49 \begin {gather*} \frac {4 x+8 x^3+8 x^5+14 i \sqrt {1-i} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} E\left (\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )+(13-27 i) \sqrt {1-i} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} F\left (\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )-15 (1-i)^{3/2} \sqrt {1+(1-i) x^2} \sqrt {1+(1+i) x^2} \Pi \left (\frac {1}{3}+\frac {i}{3};\left .i \sinh ^{-1}\left (\sqrt {1-i} x\right )\right |i\right )}{24 \sqrt {1+2 x^2+2 x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sqrt[1 + 2*x^2 + 2*x^4])/(3 + 2*x^2),x]

[Out]

(4*x + 8*x^3 + 8*x^5 + (14*I)*Sqrt[1 - I]*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticE[I*ArcSinh[Sqrt
[1 - I]*x], I] + (13 - 27*I)*Sqrt[1 - I]*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticF[I*ArcSinh[Sqrt[
1 - I]*x], I] - 15*(1 - I)^(3/2)*Sqrt[1 + (1 - I)*x^2]*Sqrt[1 + (1 + I)*x^2]*EllipticPi[1/3 + I/3, I*ArcSinh[S
qrt[1 - I]*x], I])/(24*Sqrt[1 + 2*x^2 + 2*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.13, size = 509, normalized size = 1.22

method result size
risch \(\frac {x \sqrt {2 x^{4}+2 x^{2}+1}}{6}+\frac {\left (\frac {7}{12}-\frac {7 i}{12}\right ) \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \left (\EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )-\EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )\right )}{\sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {13 \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{12 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {5 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{4 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(239\)
elliptic \(\frac {x \sqrt {2 x^{4}+2 x^{2}+1}}{6}+\frac {5 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {7 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{12 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {7 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{12 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {7 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{12 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {5 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{4 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(358\)
default \(\frac {x \sqrt {2 x^{4}+2 x^{2}+1}}{6}+\frac {\sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{3 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {\left (-\frac {1}{6}+\frac {i}{6}\right ) \sqrt {1+\left (1-i\right ) x^{2}}\, \sqrt {1+\left (1+i\right ) x^{2}}\, \left (\EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )-\EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )\right )}{\sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {3 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{2 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {3 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticF \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{4 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {3 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{4 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}+\frac {3 i \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticE \left (x \sqrt {-1+i}, \frac {\sqrt {2}}{2}+\frac {i \sqrt {2}}{2}\right )}{4 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}-\frac {5 \sqrt {-i x^{2}+x^{2}+1}\, \sqrt {i x^{2}+x^{2}+1}\, \EllipticPi \left (x \sqrt {-1+i}, \frac {1}{3}+\frac {i}{3}, \frac {\sqrt {-1-i}}{\sqrt {-1+i}}\right )}{4 \sqrt {-1+i}\, \sqrt {2 x^{4}+2 x^{2}+1}}\) \(509\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x,method=_RETURNVERBOSE)

[Out]

1/6*x*(2*x^4+2*x^2+1)^(1/2)+1/3/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*Ell
ipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+(-1/6+1/6*I)/(-1+I)^(1/2)*(1+(1-I)*x^2)^(1/2)*(1+(1+I)*x^2)^(
1/2)/(2*x^4+2*x^2+1)^(1/2)*(EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-EllipticE(x*(-1+I)^(1/2),1/2*2
^(1/2)+1/2*I*2^(1/2)))+3/2/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*Elliptic
F(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-3/4*I/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+
2*x^2+1)^(1/2)*EllipticF(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))-3/4/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2
+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))+3/4*I/(-1+I)^(1/2)*(1+
x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticE(x*(-1+I)^(1/2),1/2*2^(1/2)+1/2*I*2^(1/2))
-5/4/(-1+I)^(1/2)*(1+x^2-I*x^2)^(1/2)*(1+x^2+I*x^2)^(1/2)/(2*x^4+2*x^2+1)^(1/2)*EllipticPi(x*(-1+I)^(1/2),1/3+
1/3*I,(-1-I)^(1/2)/(-1+I)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x, algorithm="maxima")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x, algorithm="fricas")

[Out]

integral(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} \sqrt {2 x^{4} + 2 x^{2} + 1}}{2 x^{2} + 3}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(2*x**4+2*x**2+1)**(1/2)/(2*x**2+3),x)

[Out]

Integral(x**2*sqrt(2*x**4 + 2*x**2 + 1)/(2*x**2 + 3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(2*x^4+2*x^2+1)^(1/2)/(2*x^2+3),x, algorithm="giac")

[Out]

integrate(sqrt(2*x^4 + 2*x^2 + 1)*x^2/(2*x^2 + 3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2\,\sqrt {2\,x^4+2\,x^2+1}}{2\,x^2+3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(2*x^2 + 2*x^4 + 1)^(1/2))/(2*x^2 + 3),x)

[Out]

int((x^2*(2*x^2 + 2*x^4 + 1)^(1/2))/(2*x^2 + 3), x)

________________________________________________________________________________________